Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.
Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.
Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.
Понятие теплопроводности
Теплопроводность – это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:
плотности предмета: возрастает с её увеличением;
- структуры: к примеру, дерево с поперечными волокнами отличается большим термическим сопротивлением, чем с продольными;
- пористости: чем выше значение, тем меньше средняя плотность;
- характера пустот и пор: материалы с сообщающимися порами имеют большую теплопроводность, с закрытыми мелкозернистыми порами – меньшую;
- влажности: сухие предметы менее теплопроводны;
- температуры – теплообмен уменьшается с её увеличением;
- давления – показатель увеличивается с ростом давления.
Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности. Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам. А главное – к большим расходам на отопление.
Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.
Таблица 1
Материалы и вещества | алюминий | сталь | сталь нержавеющая | бетон | воздух | вода | ДСП | рубероид | картон | резина | полиэтилен | стекло |
Коэффициент теплопроводности | 221 | 58 | 17,5 | 1,5 | 0,02 | 0,6 | 0,15 | 0,17 | 0,18 | 0,04 | 0,3 | 0,7 |
Самые высокие значения имеют металлы, низкие – теплоизоляционные предметы.
Классификация строительных материалов и их теплопроводность
Теплопроводность железобетона, кирпичной кладки, керамзитобетонных блоков, обычно используемых для возведения ограждающих конструкций, отличается самыми высокими нормативными показателями. В строительной отрасли деревянные конструкции применяются значительно реже.
В зависимости от значения показателя теплопроводности, строительные материалы делятся на классы:
- конструкционно-теплоизоляционные (от 0,210);
- теплоизоляционные (до 0,082 – А, от 0,082 до 0,116 – Б и т.д.).
Эффективность многослойных конструкций
Плотность и теплопроводность
В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:
соответствовать расчётным нормам строительства и энергосбережения;
- оставлять размеры ограждающих конструкций в пределах разумного;
- уменьшить материальные затраты на строительство объекта и его обслуживание;
- добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).
Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.
Важно также учитывать плотность при строительстве дома и при его утеплении.
Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.
Расчёт толщины стен и утеплителя
Расчёт толщины стены зависит от следующих показателей:
- плотности;
- расчётной теплопроводности;
- коэффициента сопротивления теплопередачи.
Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.
Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.
Таблица 2
Показатель | Бетоны, растворно-бетонные смеси | |||
Железобетон | Цементно-песчаный раствор | Сложный раствор (цементно-известково-песчаный) | Известково-песчаный раствор | |
плотность, кг/куб.м | 2500 | 1800 | 1700 | 1600 |
коэффициент теплопроводности, Вт/(м•°С) | 2,04 | 0,93 | 0,87 | 0,81 |
толщина стен, м | 6,53 | 2,98 | 2,78 | 2,59 |
Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).
Таблица 3.1
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Пемзобетон | Керамзитобетон | Полистиролбетон | Пено- и газобетон (пено- и газосиликат) | Кирпич глиняный | Силикатный кирпич | |
плотность, кг/куб.м | 800 | 800 | 600 | 400 | 1800 | 1800 |
коэффициент теплопроводности, Вт/(м•°С) | 0,68 | 0,326 | 0,2 | 0,11 | 0,81 | 0,87 |
толщина стен, м | 2,176 | 1,04 | 0,64 | 0,35 | 2,59 | 2,78 |
Таблица 3.2
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Кирпич шлаковый | Силикатный кирпич 11-типустотный | Кирпич силикатный 14-типустотный | Сосна (поперечное расположение волокон) | Сосна (продольное расположение волокон) | Фанера клеёная | |
плотность, кг/куб.м | 1500 | 1500 | 1400 | 500 | 500 | 600 |
коэффициент теплопроводности, Вт/(м•°С) | 0,7 | 0,81 | 0,76 | 0,18 | 0,35 | 0,18 |
толщина стен, м | 2,24 | 2,59 | 2,43 | 0,58 | 1,12 | 0,58 |
Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.
Таблица 4
Показатель | Теплоизоляционные м-лы | ||||||
ППТ | ПТ полистиролбетонные | Маты минераловатные | Плиты теплоизоляционные (ПТ) из минеральной ваты | ДВП (ДСП) | Пакля | Листы гипсовые (сухая штукатурка) | |
плотность, кг/куб.м | 35 | 300 | 1000 | 190 | 200 | 150 | 1050 |
коэффициент теплопро- водности, Вт/(м•°С) | 0,39 | 0,1 | 0,29 | 0,045 | 0,07 | 0,192 | 1,088 |
толщина стен, м | 0,12 | 0,32 | 0,928 | 0,14 | 0,224 | 0,224 | 1,152 |
Значения таблиц теплопроводности строительных материалов применяются при расчётах:
теплоизоляции фасадов;
- общестроительной изоляции;
- изоляционных материалов при устройстве кровли;
- технической изоляции.
Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.